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Abstract—A deterministic model for multipurpose, multiperiod batch plants was presented in a linearized form to
predict the future design according to the change of demand by using a modified Benders’ Decomposition. The OSL
code offered by the IBM corperation as optimizer was employed for solving several example problems. The decom-
position method was successful, showing remarkable reduction in the computing times as compared with those of the
direct solution method. Also the heunstic used as a solution approach for the multiperiod model provided an efficient
methodology to the block-structured problem by dividing the large overall problem into the manageable single period

blocks.
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INTRODUCTION

Recently, multipurpose batch plants have been given attention
due to the exploding needs of specialty chemicals and pharmaceu-
tical products. To date, many general problem formulations for mul-
tipurpose batch plants, employing both continuous and discrete var-
1ables have not used an exact MINLP or MILP formulation to get
an optimal solution [Papageorgaki and Reklaitis, 1990a, b, Wen
and Chang, 1968; Nishuda et al., 1974; Grossmann and Seargent,
1978; Remhart and Rippm, 1986, 1987, Straub and Grossmenn,
1990, 1992; Park and Park, 1999; Kang et al, 1996]. Treatment of
discrete variables as continuous mtroduces a gap between the sub-
optimal solution and the true optimal solution that has not been re-
solved to date. Therefore, a more ngorous formulation 1s needed at
the expense of greater computing effort, which might be reduced
m the near future by exploiting the problem structure. A contribu-
tion along these lines was published m 1992 by Voudouns and Gros-
smarm [1992] who mtroduced binary variables for denoting discrete
equipment sizes n their lmearnzed MILP formulations. Several cases
such as those of smgle product campaigns, multiple product cam-
paigns, single production routes and multiple production routes were
explored, but the results were not compared with previous work.
To guarantee optumality, an MILP model would be preferred because
if 1t hes a special structure, then various performance enhancing
techmiques such as SOS, boundmg, valid cuts, and so on, along with
existing MILP commercial algorithms, can be used Furthermore,
a linear model takes on the role of a stepping stone, leadng to a
stochastic batch plant model that 1s considered to be more practical.

Decomposition--sphtting a master problem mto pieces of sub-
problems--1s known to be very useful for handling large scale lmear
programming problems. The idea was extended and exploited m
mixed-vaniable problems by Benders [1962]. Theoretical develop-
ment of a programming problem (master; which may be discrete,
nonlinear etc.) and a linear programmmg problem (subproblem )
from a mathematically complicated origmal problem was discussed
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and a computational procedure for solving those problems was pre-
sented m his work. This work was extended to further theoretical
development and mndustrial applications [Geoffrion, 1972, Papa-
georgaky, 1991; Lee, 1992; Che etal., 1999; Jung et al., 1994].

In this work, a linearized multiperiod batch plant model is solved
by usimg a modified Bender's decomposition and a heurstic algo-
rithm.

MODEL DEVELOPMENT:
GENERAL MULTIPERIOD BATCH PLANTS

1. Deterministic Multiperiod Design Model (MINLP)

Batch plents are normally operated over multiple periods of tune,
with different demand levels m each period This naturally leads to
a multiperiod model, an extension to the single period model. Smee
the demand for products vanes over the periods, the design of batch
plants also must be modified accordingly.

We assume that the demands of products may vary i1 detenrmm-
1stic fashion over successive periods, that the length of the periods
1s known a priori (determimustic) and that the recipes of products
are unchanged over time. Also, no mventory balances are consid-
ered for mathematical stmplicity m formulatmg the model. Our goal
m this type of multiperiod model would be to answer the follow-
g questions:

« How much extra equipment should be purchased whenever de-
mand expansions occur?

» How can we predict the evolution of the plant design over mul-
tiple periods?

A multiperiod design model 1s proposed as an MINLP as fol-
lows.

A subscript t 18 mtroduced to denote periods that are defmed as
discrete time mtervals. N,, and N, , denote the number of a type
of equipment used m a period t and the number of equipment itermns
of type e available m period t which were already purchased by per-
10d, t-1. XP, symbolizes the amount of production of product 1 n
period t.
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The chjective function differs from that of the single period mod-
el m that it has two terms which denote the equipment cost and the
product worth, respectively. The first term involves the amount of
extra equipment to be purchased in order to meet the next period
demeand, and the equipment discount factor that decreases over time.
This term should be minimized to suppress the purchase of extra
equipment. The second term simply represents the total product sales
worth. The combination of two terms balances the equipment pur-
chase cost against the lost income from unfulfilled demands. This
also mears that two terms should be comparable in order of mag-
nitude, otherwise the chosen design as well as the formulation might
be far from reality.

minimize 3> 3 {[N,,~ N, Ja V! —p,XP,} m

The allocation constraints are similar to those given in our previ-
ous single period model except for an additional mnequality for each
subscript t. But the most important feature of the multiperiod mod-
el is shown in the connectivity constraint, which counts reuse of
the same equipment over periods. By this family of constramts, the
interperiod dependency in the design of batch plant is established
The mmimum of the followmg two terms 1 selected as a counter
for reuse of the equipment type, e.

Connectivity between periods:

min[N,, N, =Ny 122, .t @

Since the formulation considers parallel units operated m phase
and out of phase, the equipment bounding inecuality will be stated
as follows.

Equipment Bound Constraints:
N,z ¥ NU, NG, 3)

Emic,

The batch size is simply the practical size of the minimum unit
arranged m a production line. The sum of the product of the batch
size and the number of batches executed over the entire horizon is
the real production quantity of a product that the plant produces.
This production is bounded by minimum requirement and maxi-
mum allowance of the demand.

Quantity Constraints:

- VNU,,
B, =min, (S—k C)]
XP,=Yn,B, (5
k
Qi< XP, Q" ()

The following constraints define the limiting cycle time, cam-
paign duration time and total production horizon within each per-
iod. The limiting cycle time depends on how equipment is assigned
to each task and on how many parallel groups exist. The produc-
tion times of all products in a campaign cannot exceed the length
of the campaign.

Horzon Constraints:

P,..X
TL, =max, (=2 (7
Tmkt
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T,,=max {n, TL,2» &)
Hz3XT, (©)
i
Parameters
Qz,fﬂ :er+QE:'f: t:1: 2: cees e (10)

where QF, could be positive or negative (in certain cases, produc-
tion reductions may oceur).

Following contemporary practice, the cost of units and prices of
commeadities must be discournted with time. The discount factor is
modelled as an exponential function in time.

a,=age " U t=1,2, ..., (1
pe=pe T =12, Lt (12)
b, =b,=0.6 (13)

The symbols and notation are as follows;

+ XP, : Product Quantity Produced

* QF, : Expected Quantity Expansion (or Reduction)
* v Equipment Cost Discount Exponent

+ 7 . Price Discount Exponent

* P, : Product Sales Price

There are two practical ways to solve this model: one 1s to solve
this formulation directly ignoring the integer character of the vari-
ables and the other 1s to convert 1t to a nigorously formulated mod-
el and to approach its solution by mean of an appropriate method.
Tt is hard to obtain the exact optimal sohution via the direct sohation ap-
proach because of the nonlneanty of the model and the violation
of integrality of some variables. Thus we chose the latter way as
our solution method because it may attain global optimality in spite
of the expected difficulties of solving large mteger problems.

With this background, the madel is reformulated to a linearized
form (MILP).
2. Linearized Version of the Model

First, the two integer variables, N, and V,, are represented by new

Pra
binary varables. As N, is an integer we obtain N,= >p L
r=1
where Z,.=1 when p item of equipment type e are used in period
Z,,=0 otherwise. Similarly, V= XVWYJQ,
when size _ _ _ Exi _
Jof equipment e is used in period t and Y, =0 otherwise.
To linearize the objective function, Eq. (1), variable ¢, & intro-

duced to represent the product of N,, and V,, as m the smgle period
case. Thus we replace the product with o as follows:

t and where Y,=1

max mar

pmax jmax P
N V=2 P70 X VY u= 2 X PVl
=j

r=l Rt

Another factor considered 1s reuse of equipment between pen-

ods, which is symbolized as o, and o] ;:

* o,.,=1 when p items of equipment type e of size j are in period
tand t=1 (020, , 1)
* o', =0 otherwise

And
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» oy=1 when p items of equipment type e of size j are in period
tand t—1 (0, <C,, ,-1)

et vje.

* oy, =0 otherwise

It 1s evident that two different vanables, o, and o), are needed
because Eq. (2) also requires two exclusive mathematical formula
to be represented, That 15, ¢ 15 used 1f an increase of equpment usage
m the next period occurs; ¢¢" 1s used otherwise.

Fmally, the objective function takes the form:

1y=""e=1¢=1 iele=1

mm{”zzzzae,*p*[ V(o )] zzp,,xp,,}

(14)
where a,=ae Y, p,=pe”""
Connectivity between periods:
- =
20(;1'1(;: +[6pje!] -2 Ea'pje,f—l 20
7=p P=p
Vp: Vi, Ve, Vi(#1):t' =1, ..., t—1 (15)
-1
M#8,,23 0l M=t (6)
Sper Z %, 0€{0,1} (17

P
[Oher] {2 Ol o 1} [ohe-1]20  Vp; V], Ve; V(1) (18)

Pkl il i

DIDIPN IS (19)

min

PSS el

The cormectivity between ot and o (or o) 1s shown by usmg logical
“AND” m Eq. (15) and Eq. (18). That ensures that o (or &) should
be 1 only when the first two bracketed [ ] terms of those con-
straints are 1 The binary variable, 8 is a function of t, which takes

on the values zero or one according to the value of EOLW, as shown
m Egs. (16) and (17).

Egs. (15)(18) account for the repeated use of equipment m suc-
cessive periods. For mstance, if the type A units of size | which were
used 1 period | are reused and 1f one more of the same type of unit
15 purchased i period 2, then the duplicate indicator, ¢, will be
one while 04,,=1 and &,,,,=1 (in this case, all &' will be zero). Par-
ticularly, Eq. (15) and its auxiliary relations [Egs. (16)- (17)] gener-
ally cover all cases which possibly happen while o,.>0,,, . In
other words, even 1f the number of unit type e used 1s smaller than
that of the currently availeble iterns, those constraints will track the
number of available items of the specific umt e and adjust ¢¢ so that
the objective function has the correct unit cost terms. Let a unit type
e be used over three consecutive periods m the following mumbers,
3-2-5. Then, we can count the number of the reused items i1 per-
1ods (1-2) end (2-3) as two and three (not two and two), respec-
tively.

Meenwhile, if some items of a umt are i 1dle status in the next
period, then the corresponding o will be activated instead of c,
which reduces to zero.

Assignment of product-campaign-equipment:

> Y K2l VYV N (20)
k€ Ke< P
Y X2l VYV N W ey
€€ P
Kitm-menl T Ximere T X +1)eul $2
n=1,m-1;e#e"; ViVvmVvkVvt (22)
XS 2 Kowawe V3 VI, Wee P, VKV (23)
'€ Fiy
Equipment Bounds:
o S
Zp*z‘petz Z qu*g*mq@‘mekx v vkvt (24)
»=l im)e Ug=1g=1
Batch Size:
Bi< 2 2 z_'uf)q,mekr vV VmVkivt (25)
eEPmJ j g =1 xme
Bu<Bi X Xiwe V VKVt (26)
e€Py
B.2By' Y Xiw V VKV 27
c€P
Production Demand:

Among the production demand constrairts, Eq. (28) shows a dis-
tinctive feature of the production policy used m this model. Because
no overproduction 1s allowed and extreme under-production is pre-
vented, a lower bound and an upper bound on the production of each
product are given.

QUn<XP,<QL" V¥t (28)

XP, =Znud By &)
&

Next we mtroduce Eqs. (25)-(28) and (5), and obtamn

Nl Pl

*\/
Xpn<2nﬂcr 2 2 2_1_{ q}lmekr 2 2 2 Eq qu}lmek{

k€K e€FPiy=""g=1 xme k€ Ke€ Py =" g=1 lme

Eq. (5) 1s replaced by Eq. (29). P1,,.. does not reduce to zero
because it 13 forced to be lower bounded by XP,. Therefore, it retams
the proper batch size and the related mumber of batches do not varush.

Ty 2 Eq A Lepy  w>XP, ¥ VmWt: 29)

Kekee Py it Sime

Plyime STe Bymere V3 VI, Mee Py,; Vk; Vq; VJ; vt (30)

Plymec SNy ¥V, Vm; Wee P,,; Vk; Vq; V), Vt 31
Production Horizon:

The same treatment 1s applied to the production time related con-
stramts. However, one different mamipulation must be added to elumi-
nate nonlinearity of the form (continuous)+(bmary) as shown m Eq.
(35). Note that Eq. (32) does not prevent the reduction of PSL,..,
to zero due to lack of any lower bound. Fortunately, we can use the
nikt value form the production demand related constramts to pro-
vide PSL,,.. with a lower bound as follows:

T,.kzgz%PSIg,M V Vi ek P,,; VKVt (32

g=l
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PSL S Gopee VvV VI e€ P, ; Vk; VgVt 33)

PSlge<ty V', VI, £€ Py,; Vk; VeVt 34

o

3 3PSl V VN VK Wt 35

golec Py,

ETﬂcSHy v (36)

kek

Campaign Ordering;

300, 23CO, ., Vik=Lt. ., k™= -

i€l el

CO;‘erX“ek; V , vk, Vt (38)
zkr— Z Xlgk V 7 vk, Vt (39)

€€ Py

To reduce degeneracy m the campaign-product assignments, the
mdicator variable, CO,, ensures that the smaller numbered cam-
paign involves more products.

Subsidiary Constraints:
2 Y.<l VOVt (40)
15
Z Yje!— Z szmekt v vt (41)
= Rin Gom)eU kel
IVI* Z Yjef— Z zszek! V Vt (42)

(om)eUkex

where M=Maximum of 2 EX

(m)e U ke

imeit

P
2Z2,=X Y VOV (43)
r= i=

Parallel units () and groups (G) are accommodated by the next
two relations.

.
DU mees =Ximew ¥ Vm; eE P,,,; Vk; Vt (44
g=1
.
2Gmer =Xomee ¥ VI eE P, ; VK W 45)

g71

Finally, a mathematical expression for the logical “AND” for some
bmeary variables is presented. These are denived from the lineanza-

tiont of the product of two binary vanables.
Yjer +Zpe!_%jetgl v > Vj; Yje; vt (46)

Yo.t2

Jet 'pet

s —
Y jet +qu‘mek{ quimek! <1

Yiee TUgimere _Z*Bqﬁmehzo Vi, Vm; e€ P,

—2*t,,.20 V ;V; e, Vit an

V,VmeeP,; Vk, V]; Vg, Vt  (48)

im>

- Vk: Vi, Vq, Vt (49)

m>

G,

gimekt

.k Vi Y, Vit (50)

im>

FU s ~ e 1 VI, VD, €€ P,

+U —2*@m >0 Vi,Vm,ee P,

2gmekt <

Ggimerr t Ugimese s VK, Vg, Vg, VE (51)

For all of the other constraimts and vanables, the reader 1s referred
to the section on Nomenclature.
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SOLUTION METHOD AND SAMPLED RESULTS

1. Model Structure and Decomposition Method

Basically we deal with Bender’s type of decomposition with
slight differences from that of the single period model.

The problem can be divided mto two parts: design and schedul-
mg. In the design part, we can determme the product-campaign-
urnt assignment (X), and the urut sizes and numbers (o). In the latter
part, the batch sizes of production lines, number of batches of prod-
ucts and campaign duration times will be determmed. Those two
parts form a master problem (an upper-level problem) which has
the design aspect and a sub-problem (a lower-level problem) which
deals with the scheduling aspect. The master problem variables are
X and while the sub-problem(s) has two main sets of variables: one
for special ordered set (SOS) and the other for logical “AND’. Based
on the dimensionality of the X and variables, the master problem
1s considered to be a ‘hard’ problem from the view of MILP. On
the other hand, the sub problem (in which the X and o are fixed)
simply reduces to a problem mvolving batch sizing and appropri-
ate division of the production horizon simce most of the configura-
tion of the batch plant 1s already determined.

But the multiperiod model has a lmked structure composed of
mdependent single period models (blocks). The master problem
has a connection between single period models and carmot be split
mto blocks which would be solved mdependently. On the other hand,
the sub-problems are nothing but a collection of mdependent blocks
which can be dealt with one by one.

The second characteristic of this decomposition 1s that it has ad-
ditional complicating variables denoting unit numbers and sizes.
This serves to elimmate the cormectivity that inks one block to an-
other 1 the sub-problem structure.

The procedure of implementing this algonthm will be descrnibed
next Its flow diagram is shown m Fig. 1. Starting with the master
problem with known mput of the campaign lengths, the related sub-
problem can be solved from the first period to last The mput of
campaign duration tmes malkes the master problem lnear (MILP).
The process starts with an equal division of the entire horizon.

If infeasibility oocurs, the computation retums to the master prob-
lem with an mteger cut of the assignment variables. Otherwise, the

! Master Problem

I"casiblc|

X, a, o', u”(Complicating Variable)
§ )
) //H\ l
: <LB-UL>0 > 0K -+ STOP J
= e
i No
[ — .
_@h prublen‘r Pﬂvub pmbl(,m»—b ----------- ,ﬁSubhproble}Q‘ i
~_ 1 / \“H 2_/, \-.H_ﬂ_“____,/

Fig. 1. Flow diagram of decomposition in multiperiod model.
X product-campaign-unit assignment
¢ unit size and number allocation
o, a'": reuse indication of ¢ between adjacent periods
T: campaign duration time updated
IC: integer cut of current integer solution
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updated campaign duration times as well as the mteger cut are ad-
ded to the master problem. The updated data of campaign duration
times will lead to the master problem. The updated data of cam-
paign duration tmes will lead to a research of the feasible domain
of the MP solution to avoid missing of possible local mirumal pomts.

The lower bound given by the master problem 1s compared with
the current upper bound resulting from the feasible solutions of the
sub-problems. If the lower bound exceeds or is equal to the upper
bound, then the process stops because there will be no further fea-
sible set of solutions to the master problem. Otherwise, the process
w1l be resumed.

2. Modified Method (Heuristic)

In a multiperiod model, the major difficulty m applying the Ben-
der’s type of decomposition to its solution origmates from the master
problem. A solution of the master problem 1s supposed to yield values
of the complicating variables - product-umt-campaign allocation
and unit numbers and sizes. Thus, however, does not normally give
the optimal solution in reasonable computation time due to the com-
plicated mterconnectivity between periods, which often leads the
branching and bounding procedure to extensive enumeration. The
relatively weak relation of the assignment vaniables to the objective
function and the Jarge mumber of possible combimations of the as-
signments to be searched through the process are the man reasons
of the slow convergence to MP optimality.

Therefore, we need a modified solution method, particularly for
the MP. Another decomposition of the MP mto period subproblems
was carried out as follows.

2-1. Partition and Heuristic Optimization m MP

Sub-MP’s (SMP) were set up for all periods considered. The fuwst
SMP 15 solved and 1ts solution ¢ 15 used for solution of the next SMP.
After the last SMP 1s solved, we have to check for the possibility
that another combmation of o and ¢, excludmg the current pomt,
may produce a better configuration. Thus a so-called “cut” of o 1s ad-
ded to the furst SMP i the next iteration. When the objective value
1 not mmproved with further terations (untdl one equipment unit
with a size and a type 1s added only m period 1), the iteration pro-
cess 1s terminated to accept the best value as optimal solution.
2-2. Major Decomposition

With fixed X, ot and of, each partitioned sub-problem 1s solved.

v MP self- iteration with a cut
[ . e S
'—-:‘/Sub—Ml:>—'.'_’/ Sub-MP Yy rreeeeees —(_sub-MP )
] Feasible X, a, o', a”(Complicating Variable)
< e
= — T K T
‘ <LBuL2g >—2f sr0p |
\1f‘ -
| No
¥
T e T
fSub-pmhlem\.—b(’sub.pr,,Nﬂ;\}—D —D(’sub—problcm)
A T U R R
Fig. 2. Flow diagram of heuristic decomposition in multiperiod
model.

X: product-campaign-unit assignment

¢t unit size and number allocation

o, o: reuse indication of & between adjacent periods
T: campaign duration time updated

IC: integer cut of current integer solution

The next stage 1s to create a new MP with properly generated m-
teger cuts of X, of and o and to solve it. If the termination condition
1s not satisfied, the iteration contimues.

A schematic diagram of thus heuristic algorithm 1s presented m
Fig. 2.
3. Usefulness of Decomposition Algorithm

The MP 15 a relaxation of the origmal problem. Hence its fea-
sible region completely covers the solution sets of the origmal prob-
lem. In other words, the feasible solution set of the origmal prob-
lemn s just a subset of those of the MP. Hence if, through iteratiory,
every solution set of the MP 1s explored, we can ensure that the op-
timal solution 1s necessarily obtained.

Let S,,» denote the set of MP solutions, S, set of SP solutions
and S, set of origmal problem solutions.

Then,

Syp2Ssps Syp2Ser

After each iteration, we find the next better solution in MP (to
exclude the previous solution, integer cuts are necessary). So we
expect the lower bounds to ncrease as the iterations proceed and
finally the lower bound will exceed the upper bound or all solu-
tions of the MP will be explored exhaustively.

Then, we do not have to keep iterating because those two con-
ditions guarantee that we reached true optunum of the ongmal prob-
lemn, 1if one exists. Therefore, exhaustive mvestigation of the feasi-
ble region of MP results in exhaustive mvestigation of that of OP,
which produces the optimal solution.

From

Spr2Ssp2Ssp
min S,omin S;Dmin S,

If min S,;2min S, (termination condition for iterations), then,
min Sg =min Sy =min S,

Thus proves the sufficiency of the decomposition method used
for global optimum(Imear model).
4. Test Results of Computer Experiments

Four example problems were depicted m the Tables and thew
computation results were demonstrated visually m Figs. 2 through 5.
4-1. Example Problem 1

The drect decomposition method and heuristic decomposition
method were both tested for this 2-period example.

The comparison of computation tmes mvolve two methods. Us-

Table 1. Processing times and size factor [( )] for tasks in Problem 1

Product. Equipment type
task El E2 E3 E4
ATl 5(1.2) 4.5(1.25)
AT2 3(1.3)
AT3 45(1.1)
B.T1 6(1.4)
B.T2 4(1.15) 3(1.2)
CTl 7.5(1.5)
CT2 6.5(1.2)
C.T3 6(1.1) 5(1.2)

Korean J. Chem. Eng.(Vol. 19, No. 2)
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Table 2. Possible unit capacity data in Problem 1

Table 6. Solution for scheduling in Problem 2

Unit type v, N o Batch size No. batches =~ Campaign length
El 2000, 3000, 4000 3 200 Period 1 BA,, 1538 n,, 195 Ty, 1049.7
E2 2000, 3000 3 220 BA;g, 1429 ng, 175 Ty, 1349.7
E3 2000, 3000 3 280 BA,, 1667 n,, 180 T,;, 9753
E4 2000, 3000, 4000 3 360 Period 2 BA,, 1538 1,, 390 Ty, 2099 4
BA,, 1429 1, 350 T, 1950.6
Table 3. Production demands in Problem 1 BAc, 1667 ng, 260 Ty, 1950.0
S Period 3 BA,, 1538 N, 293 T,, 4533.2
Product Demand rangex 10’  Value coeff,, p,, BA,, 1429 n,, 755 T, 1466.8
Period 1 A 2.4-3.0 0.05 BA,, 1667 n., 604 T, 0.0
B 2.0-2.5 0.05
C 2.4-30 0.05
Period 2 A 48-6.0 0.05 ing even an MP solution. However, the heuristic decomposition meth-
B 4.0-5.0 0.05 od resulted in a (sub) optimal solution in reasonable time since the
C 48-6.0 0.05 partitioned sub-master problems (SMP) were each easily solved

Table 4. Comparison of computation times by two methods (heu-
ristic vs direct decomposition)

Heuristic CPU (sec) Obj. value Decomp. CPU (sec)
MP1 20.60 21575.65
MP2 20.15 3475.65 MP1 181.82
MP3 22.24 8745.65
SP1 52.67 5150.99 SP1 52.67
MP4 14.99 7918.44 MP2 545.48

Table 5. Production demands in Problem 2

Product Demand rangex10°  Value coeff, p,
Period 1 A 2430 0.05
B 2.0-2.5 0.05
C 2430 0.05
Period 2 A 48-6.0 0.05
B 40-5.0 0.05
C 48-6.0 0.05
Period 3 A 6.4-8.0 0.05
B 8.0-10.0 0.05
C 5.6-7.0 0.05

mg the direct method, the solution time required was 779.97 sec-
onds, while only 130.65 seconds was consumed using the heuristic
decomposition method (Table 4). Considening that the majority of
the computation time for the direct method 1s due to the difficulty
of the master problems mvolved, the partiioning of the master prob-
lem has obviously brought remarkable enhancement i solution tme.

Note that ‘MP(SP) »* denotes ‘m the »-th master(sub) problem’.
4-2. Example Problem 2

The same mput data as that of example problem 1 was used ex-
cept that the number of periods was mereased to three. Thus prob-
lem requires 1737/900 (mteger/contmuous) variables m total. The
production horizon 1s 6,000 hours m each period and the maximum
allowable number of parallel processing groups is chosen to be two.

The direct decomposition method was unable to obtain the opti-
mal solution due to the excessive number of iterations executed dur-
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because of the elimmation of the mterconnectivity relations and the
small number of binary variables involved m each SMP.

The first optimization of MP was completed mn three iterations.
That was followed by sub-problem solution to give optimal sched-
uling information In the second attempt of the MP solution, the best
solution after the first solution 1s found to be greater than the upper
bound. This means that further search (iteration) 1s not necessary
since no better solution can be expected through further iterations.
Therefore, we found the optimal solution that 1 shown m Table 6.

In the optimal design configuration given mn Fig. 3, note that the
design for period 3 1s distinguished from the design of period | and
2 by the campaign arrangement. The common use of most units in
all production lines forces the plant to have multiple senal cam-
paigns as long as the production horizon provides enough tume for
meeting miimum demands. Meanwhile, m period 3 where the pro-
duction demand mcreased to a higher level, the number of cam-
paigns was reduced by the jomt production of B and C. The jomnt
production of B and C requires one more item of each type of
equipment, E1 and E2.

4-3. Example Problem 3

The mput data for example problem 3 are shown in Tables 8, 9
and 10; the number of mteger variables mvolved m the formula-
tion1s 1842.

As shown m Table 8, the task-equipment assignment 1s wuque,

PERlOD! Campaign 1

el

. cHEE

Campaign 2

o[ [2]
o[ [

Aelelz

Campaign 3

[ B
HEE

Added items

Fig. 3. Optimal configuration of test Problem 2.
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Table 7. Result of computation times of Problem 2

Problem Oby. value CPU (sec)
MP1 —17550.51 34.22
MP2 —26756.15 51.20
MP3 —8250.52 38.81
SP1 —26479.0 128.46
MP4 —1505.67 31.41

Table 8. Processing times and size factor [( )] for tasks in test Prob-
lem3

Product. Equipment type

task El EZ E3 E4 E5

ATI 5(1.2)

AT2 6(1.2)

AT3 4.5(1.2)

B.T1 3.5(1.2)
B.T2 2(1.2)

B.T3 5(1.2)

C.T1 7.2(1.2)

C.T2 5.5(1.2)

C.T3 3(1.2)
D.T1 48(1.2)
D.T2 3.6(1.2)

Table 9. Possible unit capacity data in Problem 3

Unit type v, N 3
El 2000, 3000, 4000 3 200
E2 2000, 3000 3 220
E3 2000, 3000 3 280
E4 2000, 3000, 4000 3 300
E5 2000, 3000 3 350

Table 10. Production demands in Problem 3

Product Demand rangex10°  Value coeff, p,
Period 1 A 4.0-5.0 0.03
B 4.0-5.0 0.03
C 4.0-5.0 0.03
D 4.0-5.0 0.03
Period 2 A 8.0-10.0 0.03
B 8.0-10.0 0.03
c 6.4-8.0 0.03
D 8.0-10.0 0.03

and the mam concem of the design m this problem will be about
the campaign rearrangement. Fig. 4 shows that the large mcrease
m the demand (nearly double) within the same horizon (6,000 hours)
has resulted m the jont production of (A, D) and (B, C) m the same
period. Thus, one more item each of E4 and E5 must be purchased
at the begimning of period 2.

It 15 obvious that as problem size grows the computing efforts
greatly mcrease as shown mn Tables 4, 7 and 12.

; Campzign 4

Elelz

PERIOD Campaign 1

ool o L
EE | EEE
Added items

Fig. 4. Optimal configuration of test Problem 3.

Campaign 2 Campaign 3

[EF

Table 11. Solution for scheduling in Problem 3

Batch size No. batches Campaign length
Period 1 BA,, 1667 n,, 240 T,, 1392.9
BA;, 1667 ng, 279 T,, 1439.7
BA,, 1667 N, 240 T, 17277
BA,, 1667 n,, 300 T,, 1439.7
Period 2 BA,, 1667 n,, 500 T,, 2999.4
BAjg, 1667 ng, 600 T,, 3000.6
BA,, 1667 N, 417 T, 0.0
BA,, 1667 Ny, 625 T, 0.0

Table 12. Result of computation times of Problem 3

Problem Obj. Value CPU (sec)
MP1 35797.33 219.31
MP2 5377733 431.06
SP1 34615.71 1029.21
MP3 49822 .34 229.74

4-4. Example Problem 4

All previous test problems dealt with the expansion m demeand
for every product. At imes a general multiperiod batch plent must
also deal with a decrease m some of the demands, which requires
the plant design to be more flexible according to the market need.
This example considers a case n which the demands for two prod-
ucts decrease while that for the third still increases. All the related
mput data is shown m Tables 1, 2 and 13 (actually modified from
the data of problem 2).

In thus case as shown m Fig. 5, compared to Fig. 3, there were

Table 13. Production demands in Problem 4

Product Demandrangex10° Value coeff, p,
Period 1 A 2430 0.05
B 2.0-25 0.05
C 2.4-3.0 0.05
Period 2 A 4880 0.05
B 4.0-5.0 0.05
C 48-7.0 0.05
Period 3 A 6.4-6.0 0.05
B 8.0-10.0 0.05
c 5.6-6.0 0.05

Korean J. Chem. Eng.(Vol. 19, No. 2)
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Table 14. Result of computation times of Problem 4

Problem Obj. value CPU (sec)
MP1 —37140. 470.84
MP2 —25620. 8749
SP1 —-36436.4 92.04
MP3 —14882.6 552.28
PERIOD] Campaign 1 Campaign 2 Campaign 3

e

[ o
2
o[ [

o [
[ =

s | o[z [e [x] | 8l [
HEIE R EEIE

Fig. 5. Optimal configuration of test Problem 4.

AelelE

two added equipment items required in period 2 but none are added
m period 3, and campaign rearrangemert [from (B, C) and (A) to
(B, C) and (A, B)] suffices to allow the production demeands to be
met in that period.

CONCLUSION AND RECOMMENDATIONS

The smgle period model was extended to the multiperiod case
m which the change of the design is considered according to the
change of demands. The model for multiple periods was established
m a different way from the single period model in which the de-
mands must be met (the order must always be fulfilled). That s,
since the multiperiod model represents a long-term plant planmng
and design, the overproduction in every period could cause waste
of resources and over-utilization of equipment under a no mven-
tory system. But to avoid the complicated formulation that an m-
ventory system might cause we presented the plant model without
an mventory system, focusmg only on mmumization of the net -
vestment cost for the given periods. The net investment cost is com-
prised of the equipment cost the revenue loss, which 1s defined as
the lost mecome due to unfulfilled order. The objective function is
simply the necessary equipment cost which must be expended to
minimize the revenue loss for the set of periods.

For this model, a two-level decomposition was applied: the first
partition was implemented in the same manner as in the single per-
10d model whle the second peartition was implemented for each sub
problem associated with each period. Each sub problem associated
with a given period could be solved m mncreasing order of periods
with a heunstic which links the mdependent blocks to one another.
Thus, this implies that as long as each block can be solved by using
reasonable computing effort, the entire optimization of the model
will become tractable.

However, there are some further pomts to be considered m the
solution approaches and the model development.

March, 2002

First, smee even the single period model basically mcludes too
many mteger variables, causing computational difficulties, there 1s
a serious limitation on the tractable problem size. Therefore, some
heunistics (or approximation) just like m the solution method used
m the multiperiod model solution should be analyzed for larger prob-
lems.

Secondly, expansion of the multiperiod model may be consid-
ered to mventory when the number of periods is increased and their
duration becomes shorter.

The mtroduction of mventory between periods allows overpro-
duction 1 some periods and will require modifying the present mod-
el. The difficulty here lies in the mcrease of the mathematical com-

plexity.

NOMENCLATURE
1 : product
m ctask
e : equipment type
k : campaign
t : period

N, :number of units of type e

V, :umtcapacity of type e

T, :campaign length

TL, :limiting cycle time

B, :batchsize

Q, :production quantity

H, :production horizon

Kimes - product-task-equipment-campaign-period assigming variable

All others were explained n the text.
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